研究内容

本研究室ではヒトの運動システムを解明し,それを応用した新しいシステムに関する研究を行っています。

 人の運動はとても巧みな運動や、早く、力強い運動など、様々な運動ができます。このような運動ができるのは、脳神経系がどのように手足を動かすかを決定し、筋肉を制御することで実現できています。この、ヒトの運動がどのような原理で行なわれているのかを調べるために、現在、様々な観点からの研究が世界中で行なわれています。その一つとして、計算論的神経科学と呼ばれる分野が存在します。脳を調べるためには脳を測ることなどの方法もありますが、計算論的神経科学とは、脳がどのような情報処理メカニズムで働いているかを知るために、ある機能が働いている際の脳と同じ働きを行なう計算機プログラムや機械(ロボットなど)を作れる程度に脳の機能を理解すること、いわば脳を創ることで脳を理解しようという目的で研究を進める、理学(サイエンス)のことをいいます。
 運動制御の情報処理メカニズムを知るためには、まず様々な条件下での人の運動を計測・解析し、その運動の特徴を調べます。そして、なぜその特徴が現れるの仮説を立てます。それを基に、その特徴を再現できるような計算機プログラムを作り、それをシミュレーション、またはロボットに実装して、人と同じような運動が実現できるかを調べる、という手順で研究を進めています。さらに、そこで立てた仮説が、他の運動に応用できるかを調べるために、また条件を変えて運動を計測・解析する、というように発展してきます。さらに、福祉工学への応用や、柔軟に環境に適応できる人に優しい知能ロボットの実現を目指しています。それでは、いくつかの具体的な研究内容を紹介します。


上肢の運動原理の解明

 我々の研究室では特に腕や手指の運動に注目し、その巧みな運動を実現している運動原理の解明を目指して研究を行なっています。具体的には手や腕の運動軌道を計測、そして解析し、その運動の特徴を調べます。人の運動は、様々なように思いますが、同じ条件であれば何度繰り返しても、他の人が行っても、共通である特徴があります。その普遍的な特徴は、おそらく何らかの理由があって脳がそのような運動を作り出していると考えられています。その特徴が現れる計算過程を解明し、運動を実現する基本原理の神経計算モデルを構築します。このモデルを使えば、同じ条件を与えれば手や腕の運動を予測・再現できる訳です。

 運動原理を解明する研究の例として、腕の2点間到達運動というものを取り上げましょう。それではマウスを持って、下の青丸の点にカーソルを置いてください。そして、黄色の丸の点へマウスを移動させてください。このように、運動の開始点から目標点まで手先を動かす運動を2点間到達運動と呼びます。この運動はの点に到達すれば良いのですから、色々な軌道が考えられますが、実際は人はだいたい赤の線のような直線的な運動を行い、緑線で描かれたような遠回りはしません。さらに、そのときの手先位置xの運動時間tに対する変化を調べると、

x(t) = a0t5+ a1t4+ a2t3+ a3t2+ a4t+ a5
のような、運動時間の5次関数で近似できるような軌道になります。このような運動では、工学的にはリアルタイムに視覚などで自分の手先位置と目標点との誤差を測り、その誤差を基にしたフィードバック制御が行われていると考えるのが普通です。ところが、人の視覚情報処理には時間がかかるためこのようなフィードバック制御では難しい上に、たとえそのような要素を考慮しなくても目標点とと手先位置の誤差によるフィードバック制御では上記のような軌道にはなりません。人が自由意志で行う随意運動の中で、もっとも簡単な運動である2点間到達運動でさえ、その制御の仕組みはまだよく分かっていないのです。

写真

2点間到達運動

 2点間到達運動のこのような特徴を再現する仮説をより複雑な運動を説明する事に使えるかを、さらに条件を加えた運動を計測・解析することで検証しています。例えば、下に示すような字を書く運動を実行する時にも、同じモデルに新たな経由点の位置を条件として付加する事で、人の運動を再現出来ています。

写真写真写真


アイ・ハンド・コーディネーション

 ヒトが字を書く時のように線などを正確に描く場合,視覚から得た情報が正確な腕運動を行うためには重要な役割を担っています.すなわち,腕運動を正確に行うために必要な情報を得られるように,視線位置を適切に制御しなければなりません.例えばペンで字を書いているときには,私たちはペン先の位置を見ているように思いますが,上の項目でも述べたように,人の視覚情報処理には時間がかかるため,仮にペンで字を書いている時に線がずれてしまったとしても,それを視線で検知して,そのずれを修正するためにはとても時間がかかってしまい,ペンの位置がずれたまま,ペン先位置がさらに進んでしまい,ずれがさらに大きくなってしまう恐れがあります.そのため,線を描くような運動においては,実際にはペンの位置よりも先を見ていることが,眼球運動と腕運動の同時計測の実験を通して明らかになっています.このような眼球運動と腕運動の協調制御(アイ・ハンド・コーディネーション)を,両者を同時に計測し,視線が先行することによりどのような制御が行われているかを調べて行きます.


写真

身振り運動の認識過程の解明

 人が運動を行うときと、他人の運動を観察することに関係があることが脳研究の結果から知られています。他人の運動を観察する事とは、見真似による運動学習や、ジェスチャーなどによる意思疎通などにつながります。我々は、他人の運動を認知する情報処理メカニズムに、上記の項目で説明したような運動を生成する情報処理メカニズムが関与していると考えています。使う言語が異なっているにも関わらず、ジェスチャーで意思疎通が可能であるのは、誰にでも共通である運動を生成する情報処理メカニズムが使われているからであると考えられます。そこで、このような身振りによる意思伝達の例として、オーケストラの指揮者の腕運動など計測して腕運動の生成モデルを用いて解析し、身振り運動の認識メカニズムのモデルを構築します。

上肢の運動原理を用いた手話翻訳システム

 上述の身振り認識のモデルを用いて手話の翻訳システムの開発を行っています。手話は手指だけでなく、腕の運動で表現される単語も多く存在します。そのような単語を表す運動に対して身振り運動の認識モデルを適用すると、下に示した図のように、運動データを少数の離散的な特徴点の情報に圧縮することができます。それを翻訳に用いる事で効率的で高精度な手話単語の翻訳を実現しています。今後は手指の形状の情報等と組み合わせて、より大規模な手話単語を認識するシステムへの拡張を目指しています。

写真

「料理」という手話単語運動の計測軌道とモデルによる予測軌道


対象物操作における認知・運動学習メカニズムの解明

 人は対象物を認識して、その結果に基づいて手や腕の運動を計画することにより、様々な運動を巧みに実行しています。目の前にあるコップを取って水を飲む運動を考えてもらえればわかるでしょうか。コップには色々な形や大きさ、重さのものがあります。そのコップを認識した結果、我々はそのコップ自体をつかんで持った方が良いのか、あるいはそのコップに付いている取っ手を持った方が良いのか、さらにはその取っ手の中に何本の指を入れたら良いのかといったことを瞬時に判断し、かつ、コップの中の水をこぼさないように指や腕の運動を計画して実行しているわけです。本研究テーマでは、対象物操作における認知・運動学習メカニズムを運動計測・解析を行なうことにより明らかにします。手の運動は手指運動計測装置により指の開き加減や傾き、曲げ具合などを計測し、腕の運動は3次元位置計測装置を用いて腕の姿勢の計測を行ないます。さらに対象物操作のための認識と運動の統合メカニズムをニューラルネットワークモデルを用いてモデル化を行なう研究も行なっています。


運動自由度の制御モデル

我々の身体は非常に多自由度のシステムです。上肢で考えると、腕は3関節で7自由度、指も??自由度あります。人が巧みに運動を行うことができるもう1つの要因は、この目的の運動を実現するためには過剰な自由度(冗長自由度)をうまく使っているからです。しかし、人はこの自由度を最初からうまく使いこなしているわけではなく、運動学習の初期には一部の関節を固定し、運動が上達するにつれて、徐々に運動に使う関節を増やす事で自由度を増やし、巧みな運動が実現できていると考えられます。これをフリージングと言います。この数理モデルを構築して計算機シミュレーションで検証しています。

最後に

 運動を巧みに行わせる研究なのか?ということで、ロボット工学と思われるかもしれませんが、少し違います。例えば、知能ロボットの実現を目指すことにしてみても、普通のロボット工学では例えば歩く、移動する、対象物の操作をするなどの目的があり、それを実現するためには実現可能である限り、どのようなハードウェア、アルゴリズムを使っても構いません。しかし、我々は運動をしている時のヒトの脳の情報処理の原理を知りたい、ということが目的ですので、ロボットを使って研究する場合にはそのロボットを「研究の道具」として使っているのです。つまり、我々が考えた理論に従ってロボットを実際に動かしてみることを通して、その理論の正しさを確認しているのです。ですから、それによって得られるロボットの技術は、本来の脳の働きの研究の副産物ということになります。ここが計算論的神経科学の一つの大きな特徴といえます。


実験装置

 人間の運動原理を解明するためには、実際に人間の運動を計測したり、理論をロボットに適応して制御を行う必要があります。ここでは本研究室にある実験装置の代表的なものを紹介します。



OptiTrack:同じく計測対象物に取り付けられたマーカーを複数のカメラで追跡し、3次元位置データをリアルタイムに計測できます。カメラの位置を任意に変えられ、かつマーカー側にはケーブルがないためより様々な運動を計測できますが、精度、計測周期はやや落ちます。

写真



Liberty:磁気式の3次元計測装置。ソースから発生している磁界中を移動するマーカーの位置と向きを計測できます。
カメラを使っていないため、オクリュージョンと呼ばれる計測できない空間は生じないので任意の運動を計測できますが、精度は落ち、かつ計測環境がかなり限定されます。下の写真のように、CyberGloveという手形状の計測装置と組み合わせて、手話運動の計測などに使います。

写真



筋電計:6チャンネルの筋電計です。運動を行うと筋肉に電気が流れます。それを皮膚表面から測定する装置です。

写真



Tobii:目でモニター画面上のどこを見ているかを計測する装置です.

写真